1	(i)	$\blacklozenge T_1 \qquad \blacklozenge R \qquad \blacklozenge T_2$	B1	Diagrams for both 2 and 9 kg blocks. The tensions must be different from each other. No extra forces.
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B 1	Tensions on 6 kg block. The tensions must be different from each other. No extra forces.
		$\checkmark_{2g} \qquad \checkmark_{6g} \qquad \checkmark_{9g}$	B1	6g and R on 6 kg block. No extra forces.
				Special Case When the tensions are given as T_1 , T_2 , T_3 , T_4 (or equivalent) award up to SC1 SC0 for the first two marks.
			[3]	
	(ii)	$9g - T_2 = 9a$	M1	First equation correct
		$T_{2} - T_{1} = 6a$	M1	Both the remaining two equations correct.
		$T_1 - 2g = 2a$		Do not give this mark if both tensions are shown as the same.
		7 (104 (m -2)	A1	The final three marks are dependent on both M marks
		$a = \frac{17}{17}g = 4.04 \text{ (m s)}$		<i>a</i> , T_1 and T_2 may be found in any order and FT should be allowed from the first of these found
		$T_1 = 27.7$ (N)	A1	
		$T_2 = 51.9$ (N)	A1	
			[5]	
	(ii)	Alternative: Whole system		
		9g - 2g = 17a	M1	
		$a = \frac{7g}{17} = 4.04$	A1	
		$T_1 - 2g = 2a$ and $9g - T_2 = 9a$	M1	Both equations correct. Oe.
		$T_1 = 27.7 (N)$	A1	The final two marks are dependent on both M marks. T_1 and T_2 may be found in
		$T_2 = 51.9 (N)$	A1	either order and FT should be allowed from their value for <i>a</i> .

Foll	Follow through between parts of Question 2 should be allowed for values found in parts (ii) and (iii) providing the questions are not simplified.						
2	(i)	F - R = ma	M1	Use of Newton's 2 nd Law			
		$300 - R = (750 + 50) \times 0.25$	A1	Correct elements present			
		R = 100	A1	This is a given result			
			[3]				
	(ii)	Carol in Component of weight down slope	M1	Resolving down the slope. Accept use of 750 instead of 800.			
				For this mark only condone no g and allow sin-cos interchange.			
		$=800g\sin 1.5^{\circ}(=205.2 \text{ N})$	A1	Give M1 A1 for 800gsin15° seen			
		Martin has to overcome 305.2 N					
		300 < 305.2 Martin cannot manage	A1	This mark may be awarded for an argument based on Newton's 2^{nd} law leading towards $a = -0.006$			
		Carol out Martin has to overcome $750g \sin 1.5^\circ + 100 = 292.4 \text{ N}$					
		300 > 292.4 so Martin manages	B1	Explanation, based on correct working, that Martin can manage. This can be given retrospectively with a comment on a positive value for <i>a</i> .			
		300 - 292.4 = 7.6 = 750a	M1	Use of Newton's 2 nd Law			
		The acceleration is 0.010 m s^{-2}	A1	Cao. Accept 0.01 or an answer that rounds to 0.01.			
			[6]				
	(iii)	Component of Carol's force parallel to the line of the car	M1	For attempt at resolution in the correct direction. For this mark only, condone sin-cos interchange.			
		$=150\cos 30^{\circ}$ (=129.9)	A1	Give M1 A1 for 150cos30° seen			
		Resultant forward force $= 7.6 + 129.9 = 137.5$	M1	All forces parallel to the slope present and correct. Sign errors condoned.			
		750 <i>a</i> = 137.5					
		The acceleration is 0.183 m s^{-2}	A1	FT their force parallel to the slope from part (ii) (correct value 7.6 N)			
			[4]				

2	(iv)	Component of weight down the slope			
		$=(750+50+80)\times 9.8\times \sin 3^{\circ}$			
		880a = 451.3 - 100	M1	Newton's 2nd law with correct elements present. No sin-cos interchange. The same mass must be used in both places.	
		<i>a</i> = 0.399	A1		
		$v^2 - u^2 = 2as$			
		When $v = 8$, $s = 8^2 \div (2 \times 0.399)$	M1	Selection and use of an appropriate formula (unless with $a = g$)	
		<i>s</i> = 80.1	A1	FT their value of a	
		80.1 < 100 so Yes they get the car started	A1	FT their value of a	
			[5]		
	(iv)	Alternative: Finding the speed after 100 m			
		Component of weight down the slope			
		$=(750+50+80)\times 9.8\times \sin 3^{\circ}$	M1	Newton's 2nd law with correct elements present. No sin-cos interchange	
		880a = 451.3 - 100			
		<i>a</i> = 0.399	A1		
		$v^2 - u^2 = 2as$			
		$v^2 = (0^2) + 2 \times 0.399 \times 100$	M1	Selection and use of an appropriate formula (unless with $a = g$)	
		$v = (\sqrt{79.8}) = 8.93$	A1	FT their value of a	
		(v > 8) so they get the car started	A1	FT their value of a	

(Questic	on	Answer	Marks	Guidance	
3	(i)		Whole train: mass $= 150$ tonnes	B1	Both totals required.	
			Total Resistance = 3000 N			
			12000 - 3000 = 150000a	M1	Correct elements must be present	
			a = 0.06 The acceleration is 0.06 m s ⁻²	A1	CAO. Errors with units (eg not converting tonnes to kilograms) are penalised here but condoned where possible for the remainder of the question.	
				[3]		
	(ii)		Truck B: $T - 500 = 30000a$	M1	Correct elements must be present	
			$T - 500 = 30000 \times 0.06$	A1	Allow FT for <i>a</i> from part (i) if units are used consistently, for all the marks in this part	
			T = 2300	A1		
			Between A and B, tension of 2300 N			
				[3]		
			Alternative			
			Rest of train: $12\ 000 - 2500 - T = 120\ 000a$	M1	Correct elements must be present	
			$T = 12\ 000\ -2500\ -120\ 000\ \times\ 0.06$	A1		
			T = 2300	A1		
	(iii)		Treating the train as a whole - 2000 - 5000 - 500 = 150 000 <i>a</i>	M1		
			a = -0.05	A1	Allow FT for the remaining A marks in part (iii) from an error in a	
			$v^2 - u^2 = 2as$	M1		
			$0^2 - 10^2 = 2 \times (-0.05) \times s$			
			s = 1000 Stopping distance is 1000 m	A1		
			B: $T - 500 = 30000a$	M1	Correct elements must be present.	
					Alternative for rest of train: $-T - 5000 - 2000 = 120\ 000 \times -0.05$	
			T = -1000	A1	The sign of 1000 must be consistent with the direction of <i>T</i> .	
			Between A and B, thrust of 1000 N	A1	Dependent on previous M and A marks. Accept "compression".	
				[7]		

(Question		Answer	Marks	Guidance
3	(iv)		Equilibrium parallel to the slope	M1	Correct elements must be present and there must be an attempt to resolve the weight. Condone omission of g for this mark.
			$150000 \times 9.8 \times \sin \alpha + 3000 = 12000$	A1	
			$\alpha = 0.35^{\circ}$	A1	CAO
				[3]	
	(v)		B: $T_2 - 500 - 30000 \times 9.8 \times \sin 0.35^\circ = 0$	M1	Correct elements must be present. Condone omission of g for this mark. Do not accept 1800 N for the component of the weight without justification. Alternative for rest of train: $12000 = T + 2500 + 120000 \times 9.8 \times \sin 0.35^{\circ}$
			$T_2 = 2300$	A1	This mark can only be awarded if the angle found in (iv) is correct.
			Between A and B, tension of 2300 N, as in part (ii)		
				[2]	

Question		on	Answer	Marks	Guidance
4	(i)		If the acceleration is to the right		
			Overall $30 - F = (4+6) \times 2$	M1	Newton's 2 nd Law in one direction. No extra forces allowed and signs must be correct.
			<i>F</i> =10	A1	
			If the acceleration is to the left	M1	For considering second direction. No extra forces allowed and signs must be correct.
			F = 50	A1	
				[4]	
	(ii)		6 kg block $30 - T = 6 \times 2$	M1	Newton's 2 nd law with correct elements on either block
			$\Rightarrow T = 18$	A1	CAO No follow through from part (i)
			In the other case $T = 42$	A1	CAO No follow through from part (i)
				[3]	

(Question		Answer	Marks	Guidance
5	(i)		v = u + at	M1	Use of a suitable constant acceleration formula
			$5 = 0 + a \times 10 \implies a = 0.5$	A1	Notice The value of a is not required by the question so may be implied by subsequent working
			$F = ma \implies 120 - R = 40 \times 0.5$	M1	Use of Newton's 2 nd Law with correct elements
			$R = 100 \mathrm{N}$	E1	
				[4]	
	(ii)	(A)	$F = ma \implies -100 = 40a$	M1	Equation to find a using Newton's 2^{nd} Law
			$\Rightarrow a = -2.5$	A1	
			When $t = 1.6$ $v = 5 + (-2.5) \times 1.6 = 1 \text{ ms}^{-1}$	A1	CAO
				[3]	
	(ii)	(<i>B</i>)	When $t = 6$, it is stationary. $v = 0 \text{ ms}^{-1}$	B1	
				[1]	

Q)uestio	on	Answer	Marks	Guidance
5	(iii)		Motion parallel to the slope:	B1	Component of the weight down the slope, ie $40g \sin 15^\circ$ (= 101.457)
			$200 - 40g\sin 15^\circ = 40a$	M1	Equation of motion with the correct elements present. No extra forces.
			<i>a</i> = 2.463		This result is not asked for in the question
			$v^2 - u^2 = 2as \implies 8^2 = 2 \times 2.46 \times s$	M1	Use of a suitable constant acceleration formula, or combination of formulae. Dependent on previous M1.
			\Rightarrow <i>s</i> = 12.989 rounding to 13.0 m	E1	Note If the rounding is not shown for <i>s</i> the acceleration must satisfy $2.452 < a < 2.471$
				[4]	
	(iv)		Let <i>a</i> be acceleration up the slope		
			$-40 \times 9.8 \times \sin 15^\circ = 40a$	M1	Use of Newton's 2 nd Law parallel to the slope
			a = -2.536, ie 2.536 m s ⁻² down the slope	A1	Condone sign error
			$s = ut + \frac{1}{2}at^2$		
			$-12.989=8t+\frac{1}{2}\times(-2.536)t^2$	M1	Dependent on previous M1. Use of a suitable constant acceleration formula (or combination of formulae) in a relevant manner.
			$1.268t^2 - 8t - 12.989 = 0$	A1	Signs must be correct
			$t = \frac{8 \pm \sqrt{64 - 4 \times 1.268 \times (-12.989)}}{2 \times 1.268}$	M1	Attempt to solve a relevant three-term quadratic equation
			t = -1.339 or 7.647, so 7.65 seconds	A1	
L				[6]	

(Question		Answer	Marks	Guidance
5	(iv)		Alternative 2-stage motion		
			Let <i>a</i> be acceleration up the slope		
			$-40 \times 9.8 \times \sin 15^\circ = 40a$	M1	Use of Newton's 2 nd Law parallel to the slope
			a = -2.536, ie 2.536 m s ⁻² down the slope	A1	Condone sign error
			Motion to highest point		
			$v = u + at \implies 0 = 8 - 2.536t$	M1	Dependent on previous M1. Use of a suitable constant acceleration formula, for either t or s , in a relevant manner.
			t = 3.154	A1	For either t or s
			$s = ut + \frac{1}{2}at^2 \implies s = 8 \times 3.154 \frac{1}{2} \times 2.536 \times 3.154^2$		
			<i>s</i> = 12.616		
			Distance to bottom = 12.989 + 12. 616 = 25.605		
			$s = ut + \frac{1}{2}at^2 \Longrightarrow 25.605 = \frac{1}{2} \times 2.536 \times t^2$	M1	Use of a suitable constant acceleration formula
			t = 4.493		
			Total time = $3.154 + 4.493 = 7.647s$	A1	